Обозначение термистора на схеме. Принцип действия, характеристики и основные параметры термистора. Терморезисторы прямого подогрева - стабилизаторы напряжения

И состоящий из полупроводникового материала, который при небольшом изменении температуры сильно изменяет свое сопротивление. Как правило, термисторы имеют отрицательные температурные коэффициенты, то есть их сопротивление падает с увеличением температуры.

Общая характеристика термистора

Слово "термистор" - это сокращение от его полного термина: термически чувствительный резистор. Этот прибор является точным и удобным в использовании сенсором любых температурных изменений. В общем случае существует два типа термисторов: с отрицательным температурным коэффициентом и с положительным. Чаще всего для измерения температуры используют именно первый тип.

Обозначение термистора в электрической цепи приведено на фото.

Материалом термисторов являются оксиды металлов, обладающие полупроводниковыми свойствами. При производстве этим приборам придают следующую форму:

  1. дискообразную;
  2. стержневую;
  3. сферическую подобно жемчужине.

В основу работы термистора принцип сильного изменения сопротивления при небольшом изменении температуры положен. При этом при данной силе тока в цепи и постоянной температуре сохраняется постоянное напряжение.

Чтобы воспользоваться прибором, его подсоединяют в электрическую цепь, например, к мосту Уитстона, и измеряют силу тока и напряжение на приборе. По простому закону Ома R=U/I определяют сопротивление. Далее смотрят на кривую зависимости сопротивления от температуры, по которой точно можно сказать, какой температуре соответствует полученное сопротивление. При изменении температуры величина сопротивления резко изменяется, что обуславливает возможность определения температуры с высокой точностью.

Материал термисторов

Материал подавляющего большинства термисторов - это полупроводниковая керамика. Процесс ее изготовления заключается в спекании порошков нитридов и оксидов металлов при высоких температурах. В итоге получается материал, состав оксидов которого имеет общую формулу (AB) 3 O 4 или (ABC) 3 O 4 , где A, B, C - металлические химические элементы. Чаще всего используют марганец и никель.

Если предполагается, что термистор будет работать при температурах меньших, чем 250 °С, тогда в состав керамики включают магний, кобальт и никель. Керамика такого состава показывает стабильность физических свойств в указанном температурном диапазоне.

Важной характеристикой термисторов является их удельная проводимость (обратная сопротивлению величина). Проводимость регулируется добавлением в состав полупроводниковой керамики небольших концентраций лития и натрия.

Процесс изготовления приборов

Сферические термисторы изготавливаются путем нанесения их на две проволоки из платины при высокой температуре (1100 °С). После этого проволока режется для придания необходимой формы контактам термистора. Для герметизации на сферический прибор наносится стеклянное покрытие.

В случае же дисковых термисторов, процесс изготовления контактов заключается в нанесении на них металлического сплава из платины, палладия и серебра, и его последующая припайка к покрытию термистора.

Отличие от платиновых детекторов

Помимо полупроводниковых термисторов, существует другой тип детекторов температуры, рабочим материалом которых является платина. Эти детекторы изменяют свое сопротивление при изменении температуры по линейному закону. Для термисторов же эта зависимость физических величин носит совершенно иной характер.

Преимуществами термисторов в сравнении с платиновыми аналогами являются следующие:

  • Более высокая чувствительность сопротивления при изменении температуры во всем рабочем диапазоне величин.
  • Высокий уровень стабильности прибора и повторяемости полученных показаний.
  • Маленький размер, который позволяет быстро реагировать на температурные изменения.

Сопротивление термисторов

Эта физическая величина уменьшает свое значение при увеличении температуры, при этом важно учитывать рабочий температурный диапазон. Для температурных пределов от -55 °C до +70 °C применяют термисторы с сопротивлением 2200 - 10000 Ом. Для более высоких температур используют приборы с сопротивлением, превышающим 10 кОм.

В отличие от платиновых детекторов и термопар, термисторы не имеют определенных стандартов кривых сопротивления в зависимости от температуры, и существует широкое разнообразие выбора этих кривых. Это связано с тем, что каждый материал термистора, как датчика температуры, обладает собственным ходом кривой сопротивления.

Стабильность и точность

Эти приборы являются химически стабильными и не ухудшают свои рабочие характеристики со временем. Термисторы-датчики являются одними из самых точных приборов по измерению температуры. Точность их измерений во всем рабочем диапазоне составляет 0,1 - 0,2 °C. Следует иметь в виду, что большинство приборов работает в температурном диапазоне от 0 °C до 100 °C.

Основные параметры термисторов

Следующие физические параметры являются основными для каждого типа термисторов (приводится расшифровка наименований на английском языке):

  • R 25 - сопротивление прибора в Омах при комнатной температуре (25 °С). Проверить эту характеристику термистора просто с использованием мультиметра.
  • Tolerance of R 25 - величина допуска отклонения сопротивления на приборе от его установленного значения при температуре 25 °С. Как правило, эта величина не превышает 20% от R 25 .
  • Max. Steady State Current - максимальное значение силы тока в Амперах, которое в течение продолжительного времени может протекать через прибор. Превышение этого значения грозит быстрым падением сопротивления и, как следствие, выходом термистора из строя.
  • Approx. R of Max. Current - эта величина показывает значение сопротивления в Омах, которое приобретает прибор при прохождении через него тока максимальной величины. Это значение должно быть на 1-2 порядка меньше, чем сопротивление термистора при комнатной температуре.
  • Dissip. Coef. - коэффициент, который показывает температурную чувствительность прибора к поглощаемой им мощности. Этот коэффициент показывает величину мощности в мВт, которую необходимо поглотить термистору, чтобы его температура увеличилась на 1 °C. Эта величина имеет важное значение, поскольку показывает, какую мощность нужно затратить, чтобы разогреть прибор до его рабочих температур.
  • Thermal Time Constant. Если термистор используется в качестве ограничителя пускового тока, то важно знать, за какое время он сможет остыть после выключения питания, чтобы быть готовым к новому его включению. Так как температура термистора после его выключения спадает согласно экспоненциальному закону, то вводят понятие "Thermal Time Constant" - время, за которое температура прибора уменьшится на 63,2% от величины разности рабочей температуры прибора и температуры окружающей среды.
  • Max. Load Capacitance in μF - величина емкости в микрофарадах, которую можно разряжать через данный прибор без его повреждения. Данная величина указывается для конкретного напряжения, например, 220 В.

Как проверить термистор на работоспособность?

Для грубой проверки термистора на его исправность можно воспользоваться мультиметром и обычным паяльником.

Первым делом следует включить на мультиметре режим измерения сопротивления и подключить выходные контакты термистора к клеммам мультиметра. При этом полярность не имеет никакого значения. Мультиметр покажет определенное сопротивление в Омах, его следует записать.

Затем нужно включить в сеть паяльник и поднести его к одному из выходов термистора. Следует быть осторожным, чтобы не сжечь прибор. Во время этого процесса следует наблюдать за показаниями мультиметра, он должен показывать плавно спадающее сопротивление, которое быстро установится на каком-то минимальном значении. Минимальное значение зависит от типа термистора и температуры паяльника, обычно, оно в несколько раз меньше измеренной в начале величины. В этом случае можно быть уверенным в исправности термистора.

Если сопротивление на мультиметре не изменилось или, наоборот, резко упало, тогда прибор является непригодным для его использования.

Заметим, что данная проверка является грубой. Для точного тестирования прибора необходимо измерять два показателя: его температуру и соответствующее сопротивление, а потом сравнивать эти величины с теми, что заявил производитель.

Области применения

Во всех областях электроники, в которых важно следить за температурными режимами, применяются термисторы. К таким областям относятся компьютеры, высокоточное оборудование промышленных установок и приборы для передачи различных данных. Так, термистор принтера 3D используется в качестве датчика, который контролирует температуру нагревательного стола либо головки для печати.

Одним из широко распространенных применений термистора является ограничение пускового тока, например, при включении компьютера. Дело в том, что в момент включения питания пусковой конденсатор, имеющий большую емкость, разряжается, создавая огромную силу тока во всей цепи. Этот ток способен сжечь всю микросхему, поэтому в цепь включают термистор.

Этот прибор на момент включения имел комнатную температуру и огромное сопротивление. Такое сопротивление позволяет эффективно снизить скачок силы тока в момент пуска. Далее прибор нагревается из-за проходящего по нему тока и выделения тепла, и его сопротивление резко уменьшается. Калибровка термистора такова, что рабочая температура компьютерной микросхемы приводит к практическому занулению сопротивления термистора, и падения напряжения на нем не происходит. После выключения компьютера, термистор быстро остывает и восстанавливает свое сопротивление.

Таким образом, использование термистора для ограничения пускового тока является рентабельным и достаточно простым.

Примеры термисторов

В настоящее время в продаже имеется широкий ассортимент товаров, приведем характеристики и области использования некоторых из них:

  • Термистор B57045-K с гаечным креплением, имеет номинальное сопротивление 1 кОм с допуском 10%. Используется в качестве датчика измерения температуры в бытовой и автомобильной электроники.
  • Дисковый прибор B57153-S, обладает максимально допустимым током 1,8 А при сопротивлении 15 Ом при комнатной температуре. Используется в качестве ограничителя пускового тока.

Терморезистором называется полупроводниковый компонент с температурозависимым электрическим сопротивлением. Изобретенный в далеком 1930 году ученым Самюэлем Рубеном, по сей день данный компонент находит самое широкое применение в технике.

Изготавливают терморезисторы из различных материалов, которых достаточно высок, - значительно превосходит металлические сплавы и чистые металлы, то есть именно из особых, специфичных полупроводников.

Непосредственно основной резистивный элемент получают посредством порошковой металлургии, обрабатывая халькогениды, галогениды и оксиды определенных металлов, придавая им различные формы, например форму дисков или стержней различных размеров, больших шайб, средних трубок, тонких пластинок, маленьких бусинок, размерами от единиц микрон до десятков миллиметров.


По характеру корреляции сопротивления элемента и его температуры, разделяют терморезисторы на две большие группы - на позисторы и термисторы . Позисторы обладают положительным ТКС (по этой причине позисторы еще называют PTC-термисторами), а термисторы - отрицательным (их называют поэтому NTC-термисторами).

Термистор - температурно-зависимый резистор, изготавливается из полупроводникового материала, имеющего отрицательный температурный коэффициент и высокую чувствительность, позистор - температурно-зависимый резистор, имеющий положительный коэффициент. Так, с возрастанием температуры корпуса позистора растет и его сопротивление, а с ростом температуры термистора - его сопротивление соответственно уменьшается.

Материалами для терморезисторов сегодня служат: смеси поликристаллических оксидов переходных металлов, таких как кобальт, марганец, медь и никель, соединений AIIIBV-типа, а также легированных, стеклообразных полупроводников, таких как кремний и германий, и некоторых других веществ. Примечательны позисторы из твердых растворов на базе титаната бария.

Терморезисторы в целом можно классифицировать на:

    Низкотемпературного класса (рабочая температура ниже 170 К);

    Среднетемпературного класса (рабочая температура от 170 К до 510 К);

    Высокотемпературного класса (рабочая температура от 570 К и выше);

    Отдельный класс высокотемпературных (рабочая температура от 900 К до 1300 К).

Все эти элементы, как термисторы, так и позисторы, могут работать при разнообразных климатических внешних условиях и при существенных физических внешних и токовых нагрузках. Однако в жестких термоцикличных режимах, со временем меняются их исходные термоэлектрические характеристики, как то номинальное сопротивление при комнатной температуре и температурный коэффициент сопротивления.

Встречаются и комбинированные компоненты, например терморезисторы с косвенным нагревом . В корпусах таких приборов размещены сам и терморезистор и гальванически изолированный нагревательный элемент, задающий исходную температуру терморезистора, и, соответствующим образом, его начальное электрическое сопротивление.

Данные приборы применяются в качестве переменных резисторов, управляемых напряжением, приложенным к нагревательному элементу терморезистора.

В зависимости от того, как выбрана рабочая точка на ВАХ конкретного компонента, определяется и режим работы терморезистора в схеме. А сама ВАХ связана с конструктивными особенностями и с приложенной к корпусу компонента температурой.

Для контроля за вариациями температур и с целью компенсации динамически меняющихся параметров, таких как протекающий ток и приложенное напряжение в электрических цепях, изменяющихся вслед за изменениями температурных условий, применяют терморезисторы с выставлением рабочей точки на линейном участке ВАХ.

Но рабочая точка выставляется традиционно на спадающем участке ВАХ (NTC-термисторы), если термистор применяется, например, в качестве пускового устройства, реле времени, в системе отслеживания и измерения интенсивности СВЧ-излучения, в системах пожарной сигнализации, в установках управления расходом сыпучих веществ и жидкостей.

Наиболее популярны сегодня среднетемпературные термисторы и позисторы с ТКС от -2,4 до -8,4 % на 1 К . Они работают в широком диапазоне сопротивлений от единиц Ом до единиц мегаом.

Встречаются позисторы с относительно малым ТКС от 0,5% до 0,7% на 1 К, изготовленные на базе кремния. Их сопротивление изменяется практически линейно. Подобные позисторы широко применяются в системах температурной стабилизации и в системах активного охлаждения силовых полупроводниковых ключей в разнообразных современных электронных приборах, особенно - в мощных. Эти компоненты легко вписываются в схемы и не занимают много места на платах.

Типичный позистор имеет форму керамического диска, иногда в одном корпусе устанавливаются последовательно несколько элементов, но чаще - в одиночном исполнении в защитном покрытии из эмали. Позисторы часто применяют в качестве предохранителей для защиты электрических схем от перегрузок по напряжению и току, а также в качестве термодатчиков и автостабилизирующих элементов, в силу их неприхотливости и физической устойчивости.

Термисторы широко применяются в многочисленных областях электроники, особенно там, где важен точный контроль за температурным процессом. Это актуально для аппаратуры передачи данных, компьютерной техники, высокопроизводительных ЦПУ и промышленного оборудования высокой точности.

Один из простейших и весьма популярных примеров применения термистора – эффективное ограничение пускового тока. В момент подачи напряжения к блоку питания от сети, происходит чрезвычайно резкий значительной емкости, и в первичной цепи протекает большой зарядный ток, способный сжечь диодный мост.

Этот ток здесь и ограничивается термистором, то есть данный компонент схемы изменяет свое сопротивление в зависимости от проходящего по нему тока, поскольку в соответствии с законом Ома происходит его нагрев. Термистор после этого восстанавливает свое исходное сопротивление, через несколько минут, как только остынет до комнатной температуры.

На основе полупроводника, значительно уменьшающий своё сопротивление при понижении температуры. На основе этих данных можно измерять температуру в понятном для микроконтроллёров виде.



Основным материалом для изготовления термистора (с отрицательным ТКС * ) служат поликристаллические оксидные полупроводники (окислы металлов ).

Существует также разновидность терморезисторов (с положительным ТКС * ) – позисторы . Их получают из титана вкупе с бариевой керамикой и редкоземельными металлами. Значительно увеличивают сопротивление при увеличении температуры . Основное применение – температурная стабилизация устройств на транзисторах.

Термистор изобретён Самуэлем Рубеном (Samuel Ruben ) в 1930 году.

Термисторы применяются в микроэлектронике для контроля температур, тяжёлой промышленности , мобильных измерительных устройствах , выполняют функцию защиты импульсных блоков питания от больших зарядных токов конденсаторов & etc .

Очень часто встречаются на компьютерных комплектующих.

Позволяют измерять температуру процессоров, систем питания, чипсетов, и прочих компонентов. Довольно надёжны, хотя не редок заводской брак, когда температура смещена на несколько десятков градусов, либо вообще находится в минусе.

Существуют также термисторы с собственным встроенным подогревом . Служат для ручного включения подогрева и подачи сигнала с резистора о изменении сопротивления, либо для контроля подачи питания сети (при отключении резистор перестанет нагреваться и изменит сопротивление).

Формы и размеры термисторов могут быть разными (диски, бусинки, цилиндры & etc ).

Основными характеристиками полупроводникового термистора являются: ТКС * , диапазон рабочих температур , максимально допустимая мощность рассеяния, номинальное сопротивление .

Термисторы (большинство) выносливы к различным температурам, механическим , к износу от времени, а при определённой обработке и к агрессивным химическим средам .

* Температурный Коэффициент Сопротивления

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

(ГОУ ВПО ИГУ)

РЕФЕРАТ

ТЕРМОРЕЗИСТОРЫ, ВАРИСТОРЫ (ПРИНЦИП ДЕЙСТВИЯ, ОСНОВНЫЕ ХАРАКТЕРИСТИКИ, ТИПОВЫЕ СХЕМЫ ВКЛЮЧЕНИЯ)

Иркутск 2008

1.Терморезисторы…….……………………………………………...………. 4

1.1. Принцип действия………………………………………...……... 4

1.2. Основные характеристики и параметры...…………………….... 6

1.3. Применение и основные схемы включения……….……...…….. 11

2. Варисторы…………………………………………………………………. 13

2.1. Принцип действия………………………………………...……... 13

2.2. Основные характеристики и параметры...……………............... 17

2.3. Применение и основные схемы включения................................. 21

3. Задание….............................................…………………………………… 22

4. Эксперимент................................................................................................ 23

Список литературы…………………...........………………………………. 26

Введение
Резисторы (сопротивления) – это наиболее распространенные компоненты электронной аппаратуры, с помощью которых осуществляется регулирование и распределение электрической энергии между цепями и элементами схем.

На практике, кроме линейных резисторов, иногда встречаются термозависимые (терморезисторы) и нелинейные (варисторы) резисторы. Нелинейные свойства подобных резисторов позволяют применять их в стабилизаторах и ограничителях напряжения, для формирования импульсов, для измерения температуры. В связи с тем, что многим современным электрическим приборам требуется параметрическая термостабилизация, защита от импульсных воздействий напряжения, наиболее удобными (из–за размеров, количества элементов) являются варисторы и терморезисторы.

1.Терморезисторы
Терморезистор – резистор, в котором используется зависимость электрического сопротивления от температуры.

Рис.1. Обозначение на схемах
^ 1.1. Принцип действия
Т

ерморезисторы выполняют или из металла, сопротивление которого линейно меняется при изменении температуры (медь, платина), или на основе полупроводников. Наиболее подходящим и распространенным материалом для изготовления терморезисторов являются полупроводники, обладающие более высоким температурным коэффициентом сопротивления.
Рис.2. Основная классификация терморезисторов
Различают два типа терморезисторов: термистор, сопротивление которого падает с ростом температуры, и позистор, у которого сопротивление с повышением температуры возрастает (рис.2).

В термисторах прямого подогрева сопротивление изменяется или под влиянием теплоты, выделяющейся в них при прохождении электрического тока, или в результате изменения температуры термистора вследствие изменения его теплового облучения (например, при изменении температуры окружающей среды).

Термисторы же косвенного подогрева имеют дополнительный источник теплоты - подогреватель. Конструктивное исполнение может быть различным. Часто подогреватель делают в виде обмотки на изоляционной трубке, внутри которой расположен термистор. В других случаях сам термистор сделан в виде трубки, внутри которой проходит нить подогрева. Нужно отметить, что общим для термисторов косвенного подогрева всех возможных конструкций является то, что у них есть две электрически изолированные друг от друга цепи: управляющая и управляемая.

Нужно отметить, что термисторы изготовляются как из монокристаллов ковалентных полупроводников, так и методом керамического обжига заготовок (оксидные полупроводники) при высоких температурах.

Позистор – это терморезистор с положительным температурным коэффициентом сопротивления. В массовом производстве позисторы делают на основе керамики из титаната бария.

У термисторов уменьшение сопротивления полупроводника с увеличением температуры (отрицательный температурный коэффициент сопротивления) может быть вызвано различными причинами – увеличением концентрации носителей заряда, увеличением интенсивности обмена электронами между ионами с переменной валентностью или фазовыми превращениями полупроводникового материала.

В диапазонах температур, где полупроводники обладают отрицательным коэффициентом сопротивления, зависимость сопротивления от температуры соответствует уравнению

, (1.1)

Где B – коэффициент температурной чувствительности (определяет физические свойства материала), - коэффициент, зависящий от материала и размеров термистора. Для позисторов действует та же формула. Различают терморезисторы низкотемпературные (рассчитанные на работу при температурах ниже 170 К), среднетемпературные (170-510 К) и высокотемпературные (выше 570 К). Кроме того, существуют терморезисторы, предназначенные для работы при 4.2 К и ниже и при 900-1300 К. Наиболее, широко используются среднетемпературные терморезисторы с ТКС от - 2,4 до -8,4 % К -1 и с номинальным сопротивлением 1 -10 6 Ом.

Основная часть терморезисторов, выпускаемых промышленностью, изготовлена из оксидных полупроводников – оксидов металлов переходной группы таблицы Д.И. Менделеева (от титана до цинка). Терморезистор изготовляют в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок.

Принцип действия терморезисторов, в зависимости от назначения, подробнее будет рассмотрен в подразделе 1.3.
^ 1.2. Основные характеристики и параметры
Рассмотрим основные параметры термисторов.

Температурная характеристика термистора – совпадает с температурной зависимостью сопротивления полупроводника, из которого изготовлен терморезистор. Пример температурной характеристики приведен на рис.3.

Рис.3. Температурная характеристика термистора
Номинальное сопротивление термистора – это его сопротивление при определенной температуре (обычно при
). Термисторы выпускают с допустимым отклонением от номинального сопротивления
и 5%. Номинальное сопротивление различных типов термисторов имеют значения от нескольких Ом до нескольких кОм.

^ Коэффициент температурной чувствительности – коэффициент в показателе экспоненты температурной характеристики термистора (1.1).Значение для данного термистора, зависящее от свойств материала, практически постоянно в рабочем диапазоне температур и лежит в пределах от 700 до 15000 К. Он может быть найден экспериментально, путем измерения сопротивлений термистора при температурах и по формуле:

. (1.2)

(ТКС) – величина, определяемая отношением относительного изменения сопротивления к изменению температуры:

(1.3)

(из соотношения (1.1)). в десятки раз больше, чем у металлических.

Коэффициент рассеяния термистора H численно равен мощности, которую надо выделить в термисторе, чтобы нагреть его на 1 К.

^ Статическая вольт – амперная характеристика – это зависимость падения напряжения на термисторе от проходящего через него тока в условиях теплового равновесия между термистором и окружающей средой (рис. 4).

Рис.4. Статические вольт – амперные характеристики термисторов прямого подогрева (сплошные линии) и гиперболы равной мощности

Она имеет ярко выраженный нелинейный характер, т.к. при протекании тока выделяется определенная мощность, что изменяет температуру термистора и, следовательно, его сопротивление. Для каждой точки статической вольт – амперной характеристики можно записать уравнение энергетического баланса:, где H – коэффициент рассеяния, учитывающий распространение теплоты от рабочего тела в окружающую среду за счет конвекции, теплопроводности, излучения; и - температура терморезистора и окружающей среды. Если учесть уравнение (1.1), то из уравнения энергетического баланса можно получить уравнения ВАХ в параметрическом виде:

, (1.4)

Вид статической ВАХ термистора определяется коэффициентом рассеяния H, коэффициентом температурной чувствительности B, номинальным сопротивлением термистора и температурой окружающей среды. При уменьшении коэффициента рассеяния H (например, при уменьшении давления, окружающего термистор) происходит более интенсивный разогрев термистора и, следовательно, те же температуры достигаются при меньших мощностях тока, т.е. статическая ВАХ смещается вниз. При увеличении температуры окружающей среды уменьшается сопротивление термистора, снижается максимум статической ВАХ и уменьшается ее крутизна. Такую зависимость используют в системах автоматического контроля и регулирования температуры. Увеличение коэффициента температурной чувствительности B приводит к смещению максимума статической ВАХ в сторону меньших мощностей, а крутизна падающего участка возрастает.

^ Максимально допустимая температура термистора – температура, при которой еще не происходит необратимых изменений параметров и характеристик термистора. Она определяется конструктивными особенностями и свойствами материала.

^ Максимально допустимая мощность рассеяния – это мощность, при которой термистор, находящийся в спокойном воздухе при С, разогревается при прохождении тока до максимально допустимой температуры.

^ Коэффициент энергетической чувствительности G численно равен мощности, которую необходимо подвести к термистору для уменьшения его сопротивления на 1%.. Он связан с температурным коэффициентом сопротивления и коэффициентом рассеяния термистора соотношением
. Значение G различно в каждой точке ВАХ.

^ Постоянная времени термистора – это время, в течение которого температура термистора уменьшится на 63% (в e раз) по отношению к разности термистора и окружающей среды. Тепловая инерционность, характеризуемая постоянной времени, определяется конструкцией и размерами термистора и зависит от теплопроводности среды, в которой находится термистор. лежит в пределах от 0.5 до 140 с.

При ознакомлении с термисторами косвенного подогрева, кроме номинального сопротивления и температурной чувствительности, существуют и специфические характеристики и параметры.

Рис.5. Статический вольт – амперные характеристики
^ термисторов косвенного подогрева приводят для различных токов через подогреватель (рис.5).

Подогревная характеристика – зависимость сопротивления термистора от мощности, выделяемой в спирали подогревной обмотки (рис.6).

Рис.6. Подогревная характеристика термистора косвенного подогрева
Для получения наибольшей чувствительности термистора косвенного подогрева (наибольшего изменения сопротивления) его следует использовать в режимах, при которых мощностью, выделяемой на самом термочувствительном элементе проходящим через него током, можно было бы пренебречь.

^ Коэффициент тепловой связи K – отношение мощности , необходимой для разогрева термочувствительного элемента до некоторой температуры при прямом нагреве, к мощности
, необходимой для разогрева до этой же температуры при косвенном подогреве.
. Обычно
.

^ Постоянные времени . Тепловая инерционность термисторов косвенного подогрева характеризуется двумя постоянными времени. За первую постоянную времени принимают время, в течение которого температура термочувствительного элемента изменяется в е раз по отношению к установившемуся значению при мгновенном изменении мощности в цепи подогревателя (тепловая инерционность всей конструкции термистора косвенного подогрева). Вторая постоянная времени характеризует задержку в изменении температуры термочувствительного элемента по отношению к изменению температуры подогревателя (тепловая инерционность термочувствительного элемента).

По аналогии с термисторами, можно оценивать свойства позисторов теми же самыми характеристиками и параметрами.

^ Температурная характеристика . Зависимость сопротивления позисторов от температуры показана на рис.7. При относительно алых и больших температурах у позисторов температурный коэффициент сопротивления отрицателен.

Рис.7. Температурные характеристики различных позисторов
^ Температурный коэффициент сопротивления для позистора является не очень удобным параметром, т.к. его значение сильно зависит от температуры.

^ Статические вольт – амперные характеристики позистора (рис.8) так же, как и ВАХ термистора, представляет собой зависимость напряжения на позисторе от проходящего через него тока при условии теплового равновесия между теплотой, выделяемой позистором, и теплотой, отводимой от него.

Рис.8. Статическая ВАХ позистора
^ 1.3. Применение и основные схемы включения
Режим работы терморезисторов зависит от того, на каком участке статической ВАХ выбрана рабочая точка. Терморезисторы с рабочей точкой на начальном (линейном) участке ВАХ используются для измерения и контроля температуры и компенсации температурных изменений параметров электрической цепей и электронных приборов. Терморезисторы с рабочей точкой на нисходящем участке ВАХ (с отрицательным сопротивлением) применяются в качестве пусковых реле, реле времени, измерителей мощности электромагнитного излучения на СВЧ, стабилизаторов, температуры и напряжения. Режим работы терморезистора, при котором рабочая точка находится также на ниспадающем участке ВАХ (при этом используется зависимость сопротивления терморезистора от температуры и теплопроводности окружающей среды), характерен для терморезисторов, применяемых в системах теплового контроля и пожарной сигнализации, регулирования уровня жидких и сыпучих сред; действие таких терморезисторов основано на возникновении релейного эффекта в цепи с терморезистором при изменении температуры окружающей среды или условий теплообмена терморезистора со средой. Терморезистор с косвенным подогревом используется в качестве переменного резистора, управляемого электрически на расстоянии.

Позисторы используются, например, для температурной стабилизации электронных устройств на транзисторах.

Рис.9. Схема включения терморезисторов
В тех случаях, когда терморезисторы используют в качестве датчика, они могут работать в следующих двух режимах:


  1. когда температура терморезистора прак-тически определяется только температурой окружающей среды (ток, проходящий через терморезистор, имеет очень малую величину);

  2. когда терморезистор нагревается прохо-дящим по нему током, а температура терморе-зистора определяется изменяющимися условиями теплоотдачи, что связано с температу-рой окружающей среды.
В первом случае терморезистор ис-пользуется в качестве датчика температуры, который получил название термометра сопро-тивления. Термометры сопротивления широко применяются для измерения температуры жидких и газообразных сред в трубопроводах, резервуарах и помещениях. В авиации они применяются для измерения температуры во-ды, масла, окружающего воздуха и др. Наи-большее распространение получили платино-вые и медные термо-метры сопротивления.

Во втором случае терморезисторы обычно применяются в качестве датчиков для измерения различных неэлектрических ве-личин, тем или иным способом изменяющих отвод тепла от терморезистора. На этом принципе построены различные датчики, изме-ряющие скорость потока газа, вакуума и др.

2. Варисторы
Варистор – полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, т. е. обладающий нелинейной симметричной вольт – амперной характеристикой.

Рис.10. Обозначение варистора на схемах
^ 2.1. Принцип действия
Основной материал для изготовления варисторов - полупроводниковый карбид кремния SiC. Кристаллы SiC размалывают до размера 40-300 мкм, и этот порошок используют в качестве основы варистора. Электропроводность порошка имеет нелинейный характер, однако она нестабильна, зависит от степени сжатия, крупности помола, меняется при тряске и т. п., поэтому порошок скрепляют связующим веществом. Порошкообразный карбид кремния и связующее вещество запрессовывают в форму и спекают. Если в качестве связующего вещества используют глину, то полученный материал называют тирит. Для изготовления тирита смесь 74% мелкоизмельченного карбида кремния и глины прессуется и обжигается при температуре 1270°С. Если используют жидкое стекло (75% SiO2 + 24% Na2O + вода, то есть силикатный клей), то полученный материал, состоящий из 84% SiC и 16% связующего, называют вилит. Смесь для изготовления вилита прессуется и обжигается при температуре 380°С. При использовании в качестве связующего вещества ультрафарфоровой связки получают лэтин, а прессованный углерод с кристаллическим кремнием называется силит.

После этого поверхность полученного элемента металлизируют и припаивают к ней выводы. Варисторы на основе карбида кремния имеют невысокий коэффициент нелинейности, порядка 5-7, поэтому в настоящее время для изготовления варисторов применяется оксид цинка с добавками оксидов висмута, кобальта, марганца, сурьмы и хрома. Технология его приготовления сложна, она включает раздельный размол компонентов, смешение со связкой, прессование, спекание с выжиганием связки, размол, вторичное спекание, вжигание электродов. В результате получается высококачественная керамика с высокой нелинейностью, величина которой составляет 50-70. Нелинейность варисторов на основе оксидных полупроводников связана не со свойствами кристаллитов (мелкие монокристаллы, не имеющие ясно выраженной огранки), а со свойствами межкристаллитных прослоек и потенциальных барьеров на поверхности кристаллитов. Однако варисторы на основе оксида цинка менее стабильны при работе и хранении, в них относительно легче получить большую нелинейность ВАХ, чем в варисторах из карбида кремния. Конструктивное оформление варисторов может быть различным в зависимости от назначения и необходимых параметров – диски, таблетки, стержни, бусинковые или пленочные.

Нелинейность ВАХ варисторов обусловлена явлениями на точечных контактах между кристаллами карбида кремния.

Рис.11. ВАХ варисторов: синие - на основе ZnO, красные - на основе SiC.
При малых напряжениях на варисторе может происходить туннелирование электронов через тонкие потенциальные барьеры, существующие на поверхности кристаллов (SiO). При больших напряжениях на варисторе и, соответственно, при больших токах, проходящих через него, плотность тока в точечных контактах становится большой. Все напряжение, проложенное к варистору, падает на точечных контактах. Поэтому удельная мощность (мощность в единице объема), выделяющаяся в точечных контактах, достигает таких значений, которые нельзя не учитывать. Разогрев точечных контактов приводит к уменьшению их сопротивления и к нелинейности ВАХ.

Сопротивление точечных контактов определяется сопротивлением растекания, т.е. сопротивлением малых активных областей полупроводника под точечными контактами. Из-за малости активных областей их разогрев практически не приводит к повышению температуры всего варистора. Кроме того, малые объемы активных областей обеспечивают малую инерционность тепловых процессов – разогрева и охлаждения этих областей (
с). Сопротивление растекания двух контактирующих кристаллов запишется в виде:
где - удельная проводимость полупроводника, d – диаметр точечного контакта, B - коэффициент температурной чувствительности поверхностных слоев кристаллов. Статическое сопротивление варистора, состоящего из a параллельно включенных цепочек, имеющих в свою очередь, b последовательно включенных контактирующих кристаллов можно записать в виде

. (2.1)

Для активных областей варистора можно записать уравнение теплового баланса:

, (2.2)

Где H – коэффициент рассеяния активных областей, T – температура активных областей,
- температура окружающей среды. Из уравнения (2.2), учитывая (2.1) можно получить уравнения ВАХ варисторов в параметрической форме:

(2.3)

Уравнения (2.3) неудобны для расчета цепей с варисторами, т.к. содержат ряд величин (a, b, d, H), значения которых практически невозможно определить непосредственно.

Теперь можно описать принцип действия варисторов. Варистор включается параллельно защищаемому оборудованию, последовательно с внутренним сопротивлением источника помех (имеется в виду сопротивление линии передачи данных с учетом омического импеданса кабеля), т.е. при нормальной эксплуатации он находится под действием рабочего напряжения защищаемого устройства. При отсутствии перенапряжения ток, проходящий через варистор, очень мал. В рабочем режиме (при отсутствии импульсных напряжений) ток через варистор пренебрежимо мал, и поэтому варистор в этих условиях представляет собой изолятор.

Рис.12. Защита схемы с помощью варистора
При возникновении импульса напряжения варистор в силу нелинейности своей характеристики резко уменьшает свое сопротивление до долей Ома и шунтирует нагрузку, защищая ее, и рассеивая поглощенную энергию в виде тепла. В этом случае через варистор кратковременно может протекать ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после гашения импульса напряжения он вновь приобретает очень большое сопротивление.

Рис.13. Напряжение на нагрузке при коммутации в сети 0,4 кВ
Таким образом, включение варистора параллельно электрооборудованию не влияет на его работу в нормальных условиях, но "срезает" импульсы опасного напряжения, что полностью обеспечивает сохранность даже ослабленной изоляции. Варистор в состоянии покоя имеет высокое сопротивление (несколько МОм) по отношению к защищаемому прибору и не изменяет характеристику электрической цепи. При превышении напряжения варистор имеет низкое сопротивление (всего несколько Ом) и фактически шунтирует прибор, т.е. устройство Е защищено.
^ 2.2. Основные характеристики и параметры
Классификационное напряжение , В - напряжение при определённом токе (обычно изготовители указывают при 1 мА), практической ценности не представляет.

^ Рабочее напряжение , В (для пост. тока и для переменного) - диапазон - от нескольких В до нескольких десятков кВ; данное напряжение должно быть превышено только при перенапряжениях.

^ Рабочий ток , А - диапазон - от 0,1 мА до 1 А

Максимальный импульсный ток , А

Поглощаемая энергия , Дж

Максимальное напряжение ограничения - это максимальное напряжение между выводами варистора в течение длительности импульса тока (8/20 μсек – предполагается, что это грозовой импульс)

^ Допускаемая мощность рассеивания - характеризует возможность рассеивать поглощаемую электрическую энергию в виде тепла. Этот показатель в основном определяется геометрическими размерами варистора и конструкцией выводов. Для увеличения мощности рассеивания часто применяют массивные выводы, которые играют роль своеобразного радиатора.

Ток перегрузки - м аксимальный пиковый ток варистора при изменении напряжения варистора на 10% при стандартном импульсе тока (8/20 μсек) приложенный один или два раза с интервалом 5 мин.

^ Средняя рассеиваемая мощность - средняя мощность рассеяния при заданной температуре окружающей среды.

Емкость - опорная величина, измеряемая при заданной частоте. Варисторы имеют достаточно большую емкость, определенным образом зависящую от приложенного напряжения.

Рис.14. Типичные вольт-фарадные характеристики варистора
Как видно из приведенного рисунка, варистор имеет определенную емкость в рабочем режиме (когда нет импульсов напряжения), а при воздействии импульса напряжения емкость варистора практически равна нулю

Информацию о напряжении на варисторе в области больших токов изготовители приводят в технических условиях. Иногда это напряжение называют остающимся напряжением. При этом обязательно указывают длительность (форму) и амплитуду импульса тока, при воздействии которого на варистор эти измерения произведены. Остающееся напряжение при различных амплитудах тока импульса можно измерить на специальных импульсных установках.

^ Оценка срока службы варистора - определяется как максимально допустимое количество импульсов, прикладываемых к варистору. Для определения используются импульсы стандартной длительности - 8/20 микросекунд (или 10/1000).

^ Коэффициент нелинейности варистора – это отношение статического R и дифференциального r сопротивлений при заданном постоянном напряжении на варисторе:

. (2.4)

При учете соотношений (2.3), найдем дифференциальное сопротивление варистора:

Тогда с учетом соотношений (2.4) и (2.5) коэффициент нелинейности варистора

(2.6)

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO. Экспериментально коэффициент нелинейности можно оценить по формуле

Чаще всего коэффициент нелинейности определяется при токе 1 мА и 10 мА, при этом формула (3) приобретает вид

Вольт – амперная характеристика , как было отмечено, должна соответствовать уравнениям (2.3). Важно отметить, что вольт – амперная характеристика варистора – симметрична. Если же схема работает в узком диапазоне изменений напряжений и токов, то коэффициент нелинейности в этом диапазоне можно считать постоянным. Тогда


И ВАХ варистора будет иметь вид:

. (2.7)

Иногда ВАХ варисторов аппроксимируют уравнением:

, (2.8)

Где
и
.

Используя уравнения (2.7) и (2.8), можно определить зависимость сопротивления от тока и напряжения:

, (2.9)

(2.10)

Температурные коэффициенты статического сопротивления, напряжения и тока (TKR , или; TKU , или , TKI , или ) . В связи с нелинейностью ВАХ следует различать температурные коэффициенты статического сопротивления варистора, измеренные при постоянных напряжении или токе, а также температурные коэффициенты напряжения и тока. Из уравнений (2.7) – (2.10), с учетом температурного изменения коэффициентов A и , получим:

, (2.13)

, (2.14)

При малых напряжениях на варисторах, когда коэффициент нелинейности
, т.е. на линейном участке ВАХ

, (2.15)

Используя уравнения (2.11) – (2.14), определим соотношения между различными температурными коэффициентами варистора:

,
.

У отечественных варисторов, в диапазоне температур от -40 до

Частотные свойства варисторов могут определяться либо инерционностью процессов, приводящих к нелинейности ВАХ, либо собственной емкостью варистора. Инерционность разогрева и охлаждения активных областей под точечными контактами между кристаллами очень мала. Поэтому частотные свойства варисторов определяются временем перезаряда их собственной емкости.

В некоторых случаях указывают коэффициент защиты варистора - это отношение напряжения на варисторе при токе 100А к напряжению при токе 1мА (т.е. к классификационному напряжению). Этот коэффициент для варисторов на основе оксида цинка находится в пределах 1.4 - 1.6, и он характеризует способность варистора ограничивать импульсы перенапряжения. Другими словами - при росте напряжения в 1,4- 1,6 раза ток возрастает в 100 000 раз (!).

^ 2.3. Применение и основные схемы включения
Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,1 мА до 1 А; высоковольтные варисторы - на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях - для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии передачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков - значительный низкочастотный шум и старение - изменение параметров со временем и при колебаниях температуры. В последние 5 лет появились на рынке так называемые "нестарящиеся" варисторы, имеющие по ряду параметров улучшение электрических свойств во времени под напряжением промышленной частоты. Важно отметить, что варисторы, как элементы защиты устанавливают параллельно защищаемому прибору (схеме).

^ 3. Лабораторное задание


4. Эксперимент
Описание экспериментальной установки для выполнения заданий 1-3.

Эксперимент проводится на установке аналогичной изображенной на рис.15. Терморезистор помещается в термостат, температура внутри которого измеряется термометром или термопарой. Сопротивление резистора измеряется омметром.

Рис.15. Экспериментальная установка
Снятие вольтамперных характеристик выполняется по схеме, приведенной на рис. 15. Измерительная цепь питается от источника постоянного регулируемого напряжения ИП с вольтметром V. Ток через терморезистор измеряется миллиамперметром.

Описание экспериментальной установки для выполнения заданий 4-6.

4. Вольтамперные характеристики варистора снимаются по схеме рис. 15. Снять вольтамперной характеристики варистора на постоянном токе. Подать питание на измерительную схему рис. 15. Изменяя входное напряжение от 0 до 60 В, замерить и записать значения тока через варистор.

Варисторы широко применяются в технике для защиты от перенапряжений (искрогасители), в стабилизаторах и ограничителях напряжения, в преобразователях сигнала (умножители частоты). В данной работе исследуется мостовой стабилизатор напряжения на варисторах (рис. 16).

Рис.16. Мостовой стабилизатор
Напряжение на выходе стабилизатора равно разности напряжений на варисторе (U) и на линейном резисторе (UR): Uвых = U - UR. С ростом входного напряжения Uвх растет ток в элементах моста. Выходное напряжение, как видно из рис.17а, вначале увеличивается, затем падает до нуля и после изменения знака снова растет по абсолютной величине.

Рис.17. Характеристики стабилизатора
Внешняя характеристика стабилизатора Uвых(Uвх) в режиме холостого хода приведена на рис. 17б.

Выходное напряжение остается приблизительно постоянным при изменении входного напряжения от Uвх1до Uвх2, когда величина дифференциального сопротивления варистора равна или близка к величине сопротивления линейного резистора. Количественной оценкой стабилизации напряжения является коэффициент стабилизации

(4.1)

При синусоидальном входном напряжении мост стабилизирует действующее значение выходного напряжения. Последнее содержит третью гармонику, удельный вес которой возрастает с ростом амплитуды входного напряжения.

При исследовании стабилизирующих свойств варисторов будет использоваться схема, приведенная на рис.17.

Рис.17. Схема мостового стабилизатора на варисторах
5. Исследование моста на постоянном токе.

Отключить осциллограф рубильником К. Переключатель П2 установить в положение «1». Подключить к схеме источник постоянного напряжения и регулируя его напряжение, установить по цифровому вольтметру V напряжение Uвх на входе стабилизатора 10 В. Установить переключатель П2 в положение «2» и измерить напряжение Uвых на выходе стабилизатора. Провести аналогичные измерения при увеличении входного напряжения до 80 В (через 10 В. Коэффициент стабилизации рассчитывается по формуле (4.1).

6. Исследование моста на переменном токе.

Включить осциллограф и подключить его к исследуемой цепи, замкнув рубильник К. Переключить клеммы и переключатель рода работы цифрового вольтметра в режим измерения переменного напряжения. Подать на вход схемы переменное напряжение от задающего генератора ЗГ и провести измерения, аналогичные измерениям на постоянном токе.

Список литературы


  1. Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. СПб.: Лань. – 2006. – 479 с.

  2. Трегубов С.В., Пантелеев В.А., Фрезе О.Г. Общие принципы выбора варистора для защиты от импульсных./ http://www.proton-impuls.ru/stati/opvv.htm

  3. Практикум по полупроводникам и полупроводниковым приборам. Под ред. Шалимовой К.В. М.: Высшая школа. - 1968. - 464 с.

  4. Гусев В.Г., Гусев Ю.М. Электроника. М.: Высшая школа. – 1991. - 622 с.

  5. Герасимов В.Г, Князьков О.М., Краснопольский А.Е., Сухоруков В.В. Основы промышленной электроники. М.: Высшая школа. – 1986. - 366 с.

Слово «термистор» понятно само по себе: ТЕРМический резИСТОР – устройство, сопротивление которого изменяется с температурой.

Термисторы являются в значительной степени нелинейными приборами и зачастую имеют параметры с большим разбросом. Именно поэтому многие, даже опытные инженеры и разработчики схем испытывают неудобства при работе с этими приборами. Однако, познакомившись поближе с этими устройствами, можно видеть, что термисторы на самом деле являются вполне простыми устройствами.

Вначале необходимо сказать, что не все устройства, изменяющие сопротивление с температурой, называются термисторами. Например, резистивные термометры , которые изготавливаются из маленьких катушек витой проволоки или из напыленных металлических плёнок. Хотя их параметры зависят от температуры, однако, они работают не так, как термисторы. Обычно термин «термистор» применяется по отношению к чувствительным к температуре полупроводниковым устройствам.

Имеется два основных класса термисторов: с отрицательным ТКС (температурным коэффициентом сопротивления) и с положительным ТКС.

Существуют два принципиально различных типа выпускаемых термисторов с положительным ТКС. Одни изготавливаются подобно термисторам с отрицательным ТКС, другие же делаются из кремния. Термисторы с положительным ТКС будут описаны кратко, а основное внимание будет уделено боле распространенным термисторам с отрицательным ТКС. Таким образом, если отсутствуют особые указания, то речь будет идти о термисторах с отрицательным ТКС.

Термисторы с отрицательным ТКС являются высокочувствительными, нелинейными устройствами с узким диапазоном, сопротивление которых уменьшается при увеличении температуры. На рис.1 изображена кривая, показывающая изменение сопротивления в зависимости от температуры и представляющая собой типовую температурную зависимость сопротивления. Чувствительность – приблизительно 4-5 %/ о С. Имеется большой диапазон номиналов сопротивлений, и изменение сопротивления может достигать многих ом и даже килоом на градус.

R R o

Рис.1 Термисторы с отрицательным ТКС очень чувствительны и в значительной

Степени нелинейны. R о может быть в омах, килоомах или мегоомах:

1-отношение сопротивлений R/R о; 2- температура в о С

По существу термисторы представляют собой полупроводниковую керамику. Они изготавливаются на основе порошков окислов металлов (обычно окислов никеля и марганца), иногда с добавкой небольшого количества других окислов. Порошкообразные окислы смешиваются с водой и различными связующими веществами для получения жидкого теста, которому придаётся необходимая форма и которое обжигается при температурах свыше 1000 о С.

Приваривается проводящее металлическое покрытие (обычно серебряное), и подсоединяются выводы. Законченный термистор обычно покрывается эпоксидной смолой или стеклом или заключается в какой-нибудь другой корпус.

Из рис. 2 можно видеть, что имеется множество типов термисторов.

Термисторы имеют вид дисков и шайб диаметром от 2.5 до приблизительно 25.5 мм, форму стержней различных размеров.

Некоторые термисторы сначала изготавливаются в виде больших пластин, а затем режутся на квадраты. Очень маленькие бусинковые термисторы изготавливаются путем непосредственного обжигания капли теста на двух выводах из тугоплавкого титанового сплава с последующим опусканием термистора в стекло с целью получения покрытия.

Типовые параметры

Говорить «типовые параметры» - не совсем правильно, так как для термисторов существует лишь несколько типовых параметров. Для множества термисторов различных типов, размеров, форм, номиналов и допусков существует такое же большое количество технических условий. Более того, зачастую термисторы, выпускаемые различными изготовителями, не являются взаимозаменяемыми.

Можно приобрести термисторы с сопротивлениями (при 25 o С - температуры, при которой обычно определяется сопротивление термистора) от одного ома до десяти мегоом и более. Сопротивление зависит от размера и формы термистора, однако, для каждого определённого типа номиналы сопротивления могут отличаться на 5-6 порядков, что достигается путём простого изменения оксидной смеси. При замене смеси также и изменяется и вид температурной зависимости сопротивления (R-T кривая) и меняется стабильность при высоких температурах. К счастью термисторы с высоким сопротивлением, достаточным для того, чтобы использовать их при высоких температурах, также обладают, как правило, большей стабильностью.

Недорогие термисторы обычно имеют довольно большие допуски параметров. Например, допустимые значения сопротивлений при 25 о С изменяются в диапазоне от ± 20% до ± 5%. При более высоких или низких температурах разброс параметров еще больше увеличивается. Для типового термистора, имеющего чувствительность 4% на градус Цельсия, соответствующие допуски измеряемой температуры меняются приблизительно от ± 5 о до ± 1,25 о С при 25 о С. Высокоточные термисторы будут рассматриваться в данной статье ниже.

Ранее было сказано, что термисторы являются устройствами с узким диапазоном. Это необходимо пояснить: большинство термисторов работает в диапазоне от –80 о С до 150 о С, и имеются приборы (как правило, со стеклянным покрытием), которые работают при 400 о С и больших температурах. Однако для практических целей большая чувствительность термисторов ограничивает их полезный температурный диапазон. Сопротивление типового термистора может изменяться в 10000 или 20000 раз при температурах от –80 о С до +150 о С. Можно представить себе трудности при проектировании схемы, которая обеспечивала бы точность измерений на обоих концах этого диапазона (если не используется переключение диапазонов). Сопротивление термистора, номинальное при нуле градусов, не превысит значения нескольких ом при

В большинстве термисторов для внутреннего подсоединения выводов используется пайка. Очевидно, что такой термистор нельзя использовать для измерения температур, превышающих температуру плавления припоя. Даже без пайки, эпоксидное покрытие термисторов сохраняется лишь при температуре не более 200 о С. Для более высоких температур необходимо использовать термисторы со стеклянным покрытием, имеющие приваренные или вплавленные выводы.

Требования к стабильности также ограничивают применение термисторов при высоких температурах. Структура термисторов начинает изменяться при воздействии высоких температур, и скорость и характер изменения в значительной степени определяются оксидной смесью и способом изготовления термистора. Некоторый дрейф термисторов с эпоксидным покрытием начинается при температурах свыше 100 о С или около того. Если такой термистор непрерывно работает при 150 о С, то дрейф может измеряться несколькими градусами за год. Низкоомные термисторы (к примеру, не более 1000 Ом при 25 о С) зачастую ещё хуже – их дрейф может быть замечен при работе приблизительно при 70 о С. А при 100 о С они становятся ненадёжными.

Недорогие устройства с большими допусками изготавливаются с меньшим вниманием к деталям и могут дать даже худшие результаты. С другой стороны, некоторые правильно разработанные термисторы со стеклянным покрытием имеют прекрасную стабильность даже при более высоких температурах. Бусинковые термисторы со стеклянным покрытием обладают очень хорошей стабильностью, так же, как и недавно появившиеся дисковые термисторы со стеклянным покрытием. Следует помнить, что дрейф зависит как от температуры, так и от времени. Так, например, обычно можно использовать термистор с эпоксидным покрытием при кратковременном нагреве до 150 о С без значительного дрейфа.

При использовании термисторов необходимо учитывать номинальное значение постоянной рассеиваемой мощности . Например, небольшой термистор с эпоксидным покрытием имеет постоянную рассеивания, равную одному милливатту на градус Цельсия в неподвижном воздухе. Другими словами один милливатт мощности в термисторе увеличивает его внутреннюю температуру на один градус Цельсия, а два милливатта - на два градуса и так далее. Если подать напряжение в один вольт на термистор в один килоом, имеющий постоянную рассеивания один милливатт на градус Цельсия, то получится ошибка измерения в один градус Цельсия. Термисторы рассеивают большую мощность, если они опускаются в жидкость. Тот же вышеупомянутый небольшой термистор с эпоксидным покрытием рассеивает 8 мВт/ о С, находясь в хорошо перемешиваемом масле. Термисторы с большими размерами имеют постоянное рассеивание лучше, чем небольшие устройства. Например термистор в виде диска или шайбы может рассеивать на воздухе мощность 20 или 30 мВт/ о С следует помнить, что аналогично тому, как сопротивление термистора изменяется в зависимости от температуры, изменяется и его рассеиваемая мощность.

Уравнения для термисторов

Точного уравнения для описания поведения термистора не существует, – имеются только приближенные. Рассмотрим два широко используемых приближенных уравнения.

Первое приближенное уравнение, экспоненциальное, вполне удовлетворительно для ограниченных температурных диапазонов, в особенности – при использовании термисторов с малой точностью.



error: Контент защищен !!